Emmanuel Arzoumanian, doctorant au LISA, soutiendra sa thèse le le jeudi 2 Décembre 2010 à 14h30 dans la salle des thèses de l’université Paris Est – 61, avenue du Général de Gaulle, 94010 Créteil – Salle des Thèses, niveau Dalle.
Développement du projet SETUP (Simulations Expérimentale et Théorique Utiles à la Planétologie) Application à l’étude de la physico-chimie de l’atmosphère de Titan.
Composition du jury :
Jean-Claude Guillemin (Rapporteur)
Michel Dobrijevic (Rapporteur)
Guy Cernogora (Examinateur)
Eric Chassefière (Examinateur)
Yves Benilan (Co-directeur de thèse)
Marie-Claire Gazeau (Directrice de thèse)
Résumé de la thèse
Le travail de cette thèse s’inscrit dans le cadre du développement du programme S.E.T.U.P. (Simulations Expérimentale et Théorique Utiles à la planétologie) dont l’objectif est d’effectuer des simulations représentatives de l’atmosphère de Titan et de déterminer les processus physico-chimiques qui y sont impliqués. Pour ce faire, un dispositif expérimental combine deux types de dépôts d’énergie (électrons et photons) représentatifs des processus de dissociation des molécules N2 et CH4 qui composent majoritairement l’atmosphère de Titan. De plus, une technique d’analyse par spectroscopie laser doit permettre d’identifier et de quantifier des produits et donc de suivre l’évolution du mélange réactionnel in situ en temps réel.
La méthodologie adoptée pour la mise en œuvre des expériences de simulations a été de caractériser l’ensemble des étapes depuis les sources énergétiques jusqu’à l’analyse des produits et de développer les outils de modélisation nécessaires à l’interprétation des expériences.
Dans un premier temps, il s’est agit de mieux caractériser les deux types de photolyse du méthane envisagés. En effet, il est prévu d’utiliser soit une lampe UV délivrant un rayonnement à Lyman-α (121,6 nm) soit un laser excimère KrF pulsé délivrant un rayonnement à 248 nm. Ce dernier doit en effet permettre des études cinétiques concernant les espèces à courte durée de vie. Des expériences d’irradiation de CH4 et d’un mélange N2/CH4 aux deux longueurs d’onde ont été menées puis simulées grâce à un modèle 0D.
L’analyse fine des résultats issus des irradiations de CH4 à Lyman-α montre que des travaux complémentaires sont nécessaires pour comprendre les différences entre les expériences et le modèle chimique. En particulier, une caractérisation de l’émission de la lampe s’est avérée indispensable et a été réalisée afin d’améliorer la compréhension de la chimie mise en jeu. Les résultats obtenus lors de l’irradiation à 248 nm suggèrent que la source laser utilisée pourrait provoquer l’ionisation de CH4 et induire une chimie ionique qui n’était pas envisagée au départ. Ce type d’irradiation pourrait se révéler intéressant pour étudier les processus ionosphériques de l’atmosphère de Titan. En revanche, cette source doit être abandonnée pour l’étude de la chimie des neutres. Une source pulsée à Lyman-α devra être développée.
Dans un deuxième temps, trois types d’expériences préliminaires de simulations de l’atmosphère de Titan ont été effectuées. Afin de mieux comprendre l’importance relative de chaque source énergétique, des expériences dites de « plasma » où N2 et CH4 sont dissociés simultanément dans un plasma crée par décharge microonde, ont tout d’abord été menées. Ensuite, des expériences dites de « post-décharge » où CH4 est introduit dans l’enceinte après la dissociation de N2 par plasma, ont été conduites. Et enfin, des expériences dites de « couplage », censées mieux représenter les processus de l’atmosphère de Titan où CH4, toujours introduit en post-décharge, est cette fois photodissocié à Lyman-α, ont été réalisées.
Lors des expériences « plasma », dix composés sont identifiés : HCN, NH3, HC3N, C2H2, C2H4, C2H6, C3H4, C4H2, HC5N et C6H2. Leur abondance est globalement en bon accord avec celle déterminée par les observations de la haute atmosphère de Titan dans la zone comprise entre 900 et 1200 km d’altitude validant ainsi le module plasma du dispositif. Lors des expériences « post-décharge » et « couplage », seuls les composés azotés HCN et NH3 sont formés et cela indépendamment du fait que le CH4 subisse ou pas une irradiation UV. Ce résultat s’explique par le fait que le taux de photodissociation du CH4 se révèle très inférieur à la dissociation de N2 par les électrons, ce qui empêche une complexification chimique des hydrocarbures dans les simulations. Il s’avère donc indispensable de modifier la source de rayonnement à Lyman-α afin d’être beaucoup plus efficace en terme de flux.
Les résultats acquis grâce à cette méthodologie « étape par étape » ont permis de mettre en évidence les paramètres qu’il faut impérativement maîtriser pour la mise en œuvre de simulations pertinentes de l’atmosphère de Titan. Ils définissent aussi l’orientation des futurs développements du projet SETUP.
Mots clés : Titan, photochimie, expérience de simulation, modélisation, plasma, méthane, spectroscopie
Aucun commentaire sur l'article Soutenance de thèse : photochimie de l’atmosphère de Titan